organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Clostebol acetate

Elisabetta Maccaroni, Andrea Mele, Renato Del Rosso and Luciana Malpezzi*

Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Via Mancinelli 7, I-20131 Milano, Italy Correspondence e-mail: luciana.malpezzi@polimi.it

Received 13 June 2011; accepted 4 July 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.038; wR factor = 0.079; data-to-parameter ratio = 13.7.

The title compound, $C_{21}H_{29}ClO_3$ [systematic name (8R,9S,-10R, 13S, 14S, 17S)-4-chloro-3-oxoandrost-4-en-17 β -yl acetate], is a 4-chloro derivative of testosterone, used as an anabolic androgenic agent or applied topically in ophthalmological and dermatological treatments. The absolute configurations at positions 8, 9, 10, 13, 14 and 17 were established by refinement of the Flack parameter as R, S, R, S, S, and S, respectively. Rings B and C of the steroid ring system adopt chair conformations, ring A has a half-chair conformation, while ring D is in a C_{13} envelope conformation. Ring B and C, and C and D are trans fused. In the crystal, molecules are linked by a weak C-H···O interaction.

Related literature

For the characterization of related structures, see Duax et al. (1971); Böcskei et al. (1996); Verma et al. (2006). For the synthesis by direct (or via epoxide) chlorination of the 4 carbon atom of the testosterone molecule, see: Camerino et al. (1956); Julian Laboratories Inc. Illinois (1960); Società Farmaceutici Italia (1960). For physiological properties when used topically in dermatological and ophthalmological treatments and by application of an anabolic drug, see: Sweetman (2009). For standard bond lengths, see: Allen et al. (1987) and for ring puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data

C21H29ClO3 $M_r = 364.89$ Orthorhombic, $P2_12_12_1$ a = 7.740 (1) Åb = 12.631(2) Å c = 19.275 (2) Å

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.945, T_{\max} = 0.978$

Refinement

refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	$\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.079$	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$
S = 0.97	Absolute structure: Flack (1983),
3325 reflections	1392 Friedel pairs
242 parameters	Flack parameter: -0.02 (6)
H atoms treated by a mixture of	
independent and constrained	

V = 1884.4 (4) Å³

Mo $K\alpha$ radiation

 $0.26 \times 0.11 \times 0.10 \text{ mm}$

8471 measured reflections

3325 independent reflections

2586 reflections with $I > 2\sigma(I)$

 $\mu = 0.22 \text{ mm}^-$

T = 295 K

 $R_{\rm int}=0.032$

Z = 4

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C6-H6B\cdotsO1^{i}$	0.97	2.62	3.565 (3)	166
Symmetry code: (i) -	$x, y + \frac{1}{2}, -z + \frac{3}{2}$			

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/NT (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Samples of the title compound were kindly provided by Steroid SPA (Via Spagna 156, 20093 Cologno Monzese, Milano, Italy).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2382).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.

Böcskei, Z., Gérczei, T., Bodor, A., Schwartz, R. & Náray-Szabó, G.(1996). Acta Cryst. C52, 2899-2903.

Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Camerino, B., Patelli, B. & Vercellone, A. (1956). J. Am. Chem. Soc. 78, 3540-3541

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Duax, W. L., Cooper, A. & Norton, D. A. (1971). Acta Cryst. B27, 1-6.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Julian Laboratories Inc. Illinois (1960). US Patent 2933510.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A**64**, 112–122. Società Farmaceutici Italia (1960). US Patent 2953582. Sweetman, S. C. (2009). Editor. Martindale: The Complete Drug Reference, 36th ed. London: The Pharmaceutical Press.Verma, R., Jasrotia, D. & Bhat, M. (2006). J. Chem. Crystallogr. 36, 283–287.

Acta Cryst. (2011). E67, o1952-o1953 [doi:10.1107/S1600536811026560]

Clostebol acetate

E. Maccaroni, A. Mele, R. Del Rosso and L. Malpezzi

Comment

Clostebol acetate (Fig. 1), systematic name: (8*R*,9*S*,10*R*,13*S*,14*S*,17*S*)-4-chloro-3-oxoandrost-4-en-17β-yl acetate, is a 4chloro derivative of testosterone, used as an anabolic androgenic agent or applied topically in ophthalmological and dermatological treatments (Sweetman, 2009). The dermal preparations of this steroid are usually used in the treatment of wounds and ulcers. The absolute configuration has been determined by refinement of the Flack parameter (Flack, 1983) which converged to -0.02 (6). Ring B and C, and C and D are *trans* fused. Ring A (C1—C5, C10) of the steroid ring system adopts a half chair conformation with puckering parameters (Cremer and Pople, 1975) of Q (total puckering amplitude) = 0.466 (3) Å, θ (azimuthal angle) = 56.4 (4)°, φ (phase angle) = 20.0 (4)°. Ring B (C5—C10) and C (C8, C9, C11—C14) are in chair conformations [ring B: Q = 0.543 (2) Å, θ = 2.0 (2)°, φ = 150 (6)°; ring C: Q = 0.575 (2) Å, θ = 3.4 (2)°, φ = 295 (3)°]. The five-membered ring D (C13—C17) is in a C₁₃ envelope conformation with puckering amplitude q₂ =0.455 (2)Å and phase angle φ_2 = 189.0 (3)°. Bond lengths and valency angles are within the range of expected values for these types of compounds (Allen *et al.*, 1987, Böcskei *et al.*, 1996, Duax *et al.*, 1971, Verma *et al.*, 2006). The acetate group is equatorially attached to the D ring and its orientation may be described by the torsion angle C17—O2—C20—O3 (0.1 (3)°).

In the crystal the molecules are linked by C—H···O weak interactions [C6—H6B···O1 = 166°; C6···O1 = 3.565 (3) Å; H6B···O1 = 2.62 Å] to form chains in a herringbone arrangement running parallel to the *b* axis (Fig. 2).

Experimental

The title compound was obtained by direct or *via* epoxide chlorination on the carbon atom in the 4 position of the testosterone acetate (Camerino *et al.*, 1956, Julian Laboratories, 1960, Società Farmaceutici Italia, 1960). The purification of the crude product was carried out by selective crystallization. Single crystals were obtained from a methanol supersaturated solution at ambient temperature.

Refinement

H atoms were positioned geometrically and refined in a riding model, except those bonded to the asymmetric carbon atoms, whose positions were freely refined. All H atoms were refined with $U_{iso}(H)$ values equal to 1.5 U_{eq} of the carrier atom for methyl groups and 1.2 U_{eq} for all remaining C atoms.

Figures

Fig. 1. Molecular structure of clostebol acetate with the atomic numbering. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. Crystal packing of clostebol acetate viewed along the *a* axis. Intermolecular C—H···O weak interactions are shown by dashed lines.

Fig. 3. Crystal packing of clostebol acetate viewed along the *b* axis.

(8R,9S,10R,13S,14S,17S)-4-chloro- 3-oxoandrost-4-en-17β-yl acetate

Crystal data

$C_{21}H_{29}ClO_3$	$D_{\rm x} = 1.286 {\rm ~Mg~m}^{-3}$
$M_r = 364.89$	Mo <i>K</i> α radiation, $\lambda = 0.71069$ Å
Orthorhombic, $P2_12_12_1$	Cell parameters from 3284 reflections
a = 7.740(1) Å	$\theta = 2.7 - 24^{\circ}$
b = 12.631 (2) Å	$\mu = 0.22 \text{ mm}^{-1}$
c = 19.275 (2) Å	<i>T</i> = 295 K
$V = 1884.4 (4) \text{ Å}^3$	Prism, colourless
Z = 4	$0.26 \times 0.11 \times 0.10 \text{ mm}$
F(000) = 784	

Data collection

Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube graphite

3325 independent reflections 2586 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.032$

ϕ and ω scans	$\theta_{\text{max}} = 25.1^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -7 \rightarrow 9$
$T_{\min} = 0.945, T_{\max} = 0.978$	$k = -13 \rightarrow 14$
8471 measured reflections	$l = -23 \rightarrow 17$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.038$	$w = 1/[\sigma^2(F_0^2) + (0.0396P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.079$	$(\Delta/\sigma)_{\rm max} = 0.035$
<i>S</i> = 0.97	$\Delta \rho_{max} = 0.17 \text{ e} \text{ Å}^{-3}$
3325 reflections	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$
242 parameters	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
0 restraints	Extinction coefficient: 0.0024 (7)
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1392 Friedel pairs
Secondary atom site location: difference Fourier map	Flack parameter: -0.02 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	-0.18920 (8)	0.39038 (5)	0.85472 (3)	0.0597 (2)
01	0.1184 (2)	0.26483 (14)	0.84059 (11)	0.0792 (6)
02	0.39800 (19)	1.08493 (11)	0.95249 (8)	0.0469 (4)
03	0.6176 (2)	1.00534 (15)	1.00740 (9)	0.0630 (5)
C1	0.3598 (3)	0.50564 (17)	0.83239 (14)	0.0493 (7)
H1A	0.4714	0.5283	0.8150	0.059*
H1B	0.3671	0.5025	0.8826	0.059*
C2	0.3202 (3)	0.39468 (18)	0.80438 (14)	0.0568 (7)
H2A	0.3219	0.3961	0.7541	0.068*

H2B	0.4088	0.3458	0.8198	0.068*
C3	0.1487 (3)	0.35718 (19)	0.82862 (13)	0.0521 (7)
C4	0.0152 (3)	0.43994 (17)	0.83408 (11)	0.0392 (6)
C5	0.0422 (3)	0.54305 (17)	0.82283 (12)	0.0386 (6)
C6	-0.1033 (3)	0.62146 (17)	0.81864 (13)	0.0486 (6)
H6A	-0.2112	0.5863	0.8298	0.058*
H6B	-0.1118	0.6483	0.7716	0.058*
C7	-0.0757 (3)	0.71354 (17)	0.86839 (14)	0.0471 (6)
H7A	-0.1674	0.7650	0.8620	0.057*
H7B	-0.0820	0.6878	0.9157	0.057*
C8	0.0979 (2)	0.76714 (16)	0.85698 (12)	0.0341 (5)
H8	0.101 (3)	0.7987 (16)	0.8113 (11)	0.041*
C9	0.2445 (2)	0.68539 (16)	0.86173 (12)	0.0343 (5)
Н9	0.240 (2)	0.6573 (16)	0.9119 (11)	0.041*
C10	0.2233 (2)	0.58776 (17)	0.81189 (11)	0.0368 (5)
C11	0.4216 (3)	0.73900 (17)	0.85446 (14)	0.0517 (7)
H11A	0.4337	0.7654	0.8075	0.062*
H11B	0.5112	0.6865	0.8619	0.062*
C12	0.4487 (3)	0.83096 (17)	0.90544 (14)	0.0490 (7)
H12A	0.4536	0.8035	0.9524	0.059*
H12B	0.5581	0.8653	0.8956	0.059*
C13	0.3036 (3)	0.91174 (16)	0.90011 (10)	0.0342 (5)
C14	0.1318 (3)	0.85315 (16)	0.91032 (12)	0.0354 (5)
H14	0.140 (3)	0.8154 (16)	0.9553 (12)	0.043*
C15	0.0001 (3)	0.94195 (17)	0.92036 (15)	0.0553 (7)
H15A	-0.0970	0.9178	0.9480	0.066*
H15B	-0.0425	0.9672	0.8760	0.066*
C16	0.1004 (3)	1.02920 (19)	0.95832 (15)	0.0545 (7)
H16A	0.0902	1.0960	0.9339	0.065*
H16B	0.0569	1.0382	1.0051	0.065*
C17	0.2886 (3)	0.99196 (17)	0.95951 (12)	0.0395 (5)
H17	0.325 (3)	0.9551 (17)	1.0049 (11)	0.047*
C18	0.3114 (4)	0.97189 (19)	0.83157 (12)	0.0572 (7)
H18A	0.2194	1.0228	0.8299	0.086*
H18B	0.2992	0.9230	0.7938	0.086*
H18C	0.4203	1.0077	0.8279	0.086*
C19	0.2448 (3)	0.6192 (2)	0.73547 (11)	0.0513 (7)
H19A	0.2299	0.5579	0.7067	0.077*
H19B	0.3582	0 6480	0 7284	0.077*
H19C	0 1597	0 6714	0 7235	0.077*
C20	0.5581 (3)	1 0808 (2)	0.97850 (13)	0.0477 (6)
C21	0 6504 (4)	1 1833 (2)	0.96711 (16)	0 0741 (9)
H21A	0 7083	1 2039	1 0091	0 111*
H21B	0.5685	1 2370	0.9543	0.111*
H21C	0.7337	1.2570	0.9306	0.111*
11210	0.7557	1.1/30	0.7500	0.111

-	-					
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0606 (4)	0.0525 (4)	0.0660 (4)	-0.0228 (3)	0.0059 (3)	0.0004 (3)
O1	0.0913 (14)	0.0317 (10)	0.1147 (17)	-0.0053 (9)	-0.0191 (12)	0.0070 (11)
02	0.0526 (10)	0.0304 (9)	0.0577 (10)	-0.0054 (8)	-0.0080 (8)	-0.0005 (8)
O3	0.0560 (11)	0.0604 (12)	0.0725 (13)	0.0045 (10)	-0.0090 (9)	0.0027 (10)
C1	0.0381 (13)	0.0344 (13)	0.0755 (18)	0.0063 (10)	0.0005 (11)	-0.0100 (13)
C2	0.0511 (14)	0.0368 (13)	0.0826 (19)	0.0094 (13)	-0.0048 (14)	-0.0104 (14)
C3	0.0690 (18)	0.0332 (15)	0.0541 (16)	-0.0028 (12)	-0.0187 (13)	-0.0016 (12)
C4	0.0418 (13)	0.0367 (14)	0.0392 (14)	-0.0070 (11)	-0.0041 (11)	-0.0010 (11)
C5	0.0404 (13)	0.0350 (13)	0.0403 (14)	-0.0021 (10)	-0.0017 (10)	-0.0045 (11)
C6	0.0339 (13)	0.0388 (13)	0.0732 (17)	-0.0040 (11)	-0.0038 (11)	-0.0058 (13)
C7	0.0307 (12)	0.0381 (13)	0.0725 (18)	0.0016 (10)	0.0041 (11)	-0.0075 (13)
C8	0.0298 (11)	0.0317 (12)	0.0407 (13)	0.0015 (9)	0.0011 (10)	0.0009 (11)
С9	0.0313 (11)	0.0316 (12)	0.0401 (13)	-0.0004 (9)	0.0021 (9)	-0.0031 (11)
C10	0.0351 (12)	0.0303 (12)	0.0449 (13)	-0.0025 (10)	0.0030 (9)	-0.0032 (11)
C11	0.0336 (12)	0.0412 (13)	0.0804 (19)	-0.0008 (10)	0.0076 (13)	-0.0216 (15)
C12	0.0325 (13)	0.0431 (14)	0.0714 (18)	-0.0014 (11)	-0.0006 (12)	-0.0172 (14)
C13	0.0355 (11)	0.0323 (12)	0.0348 (12)	-0.0028 (10)	0.0041 (10)	-0.0037 (10)
C14	0.0348 (13)	0.0325 (12)	0.0390 (13)	0.0012 (9)	0.0060 (10)	0.0002 (11)
C15	0.0391 (14)	0.0436 (15)	0.083 (2)	0.0051 (11)	0.0043 (13)	-0.0157 (14)
C16	0.0546 (16)	0.0423 (14)	0.0667 (17)	0.0055 (12)	0.0074 (14)	-0.0140 (14)
C17	0.0456 (14)	0.0302 (12)	0.0426 (14)	-0.0028 (11)	0.0017 (11)	-0.0030 (11)
C18	0.0751 (17)	0.0528 (15)	0.0436 (14)	-0.0181 (14)	0.0089 (14)	0.0012 (12)
C19	0.0582 (15)	0.0452 (16)	0.0506 (15)	-0.0037 (12)	0.0074 (11)	-0.0088 (13)
C20	0.0523 (16)	0.0449 (16)	0.0460 (15)	-0.0017 (13)	0.0035 (12)	-0.0119 (13)
C21	0.073 (2)	0.0543 (17)	0.095 (2)	-0.0212 (15)	-0.0063 (17)	-0.0127 (16)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Cl1—C4	1.747 (2)	C11—C12	1.536 (3)
O1—C3	1.212 (3)	C11—H11A	0.9700
O2—C20	1.338 (3)	C11—H11B	0.9700
O2—C17	1.454 (3)	C12—C13	1.521 (3)
O3—C20	1.196 (3)	C12—H12A	0.9700
C1—C2	1.533 (3)	C12—H12B	0.9700
C1—C10	1.532 (3)	C13—C18	1.525 (3)
C1—H1A	0.9700	C13—C17	1.533 (3)
C1—H1B	0.9700	C13—C14	1.534 (3)
C2—C3	1.485 (4)	C14—C15	1.528 (3)
C2—H2A	0.9700	C14—H14	0.99 (2)
C2—H2B	0.9700	C15—C16	1.534 (3)
C3—C4	1.473 (3)	C15—H15A	0.9700
C4—C5	1.337 (3)	C15—H15B	0.9700
C5—C6	1.502 (3)	C16—C17	1.531 (3)
C5—C10	1.526 (3)	C16—H16A	0.9700
C6—C7	1.522 (3)	C16—H16B	0.9700

	0.0700		1 00 (0)
С6—Н6А	0.9700	C17—H17	1.03 (2)
С6—Н6В	0.9700	CI8—HI8A	0.9600
С7—С8	1.521 (3)	C18—H18B	0.9600
С7—Н7А	0.9700	C18—H18C	0.9600
С7—Н7В	0.9700	С19—Н19А	0.9600
C8—C14	1.519 (3)	С19—Н19В	0.9600
C8—C9	1.537 (3)	С19—Н19С	0.9600
С8—Н8	0.97 (2)	C20—C21	1.496 (3)
C9—C11	1.535 (3)	C21—H21A	0.9600
C9—C10	1.572 (3)	C21—H21B	0.9600
С9—Н9	1.03 (2)	C21—H21C	0.9600
C10—C19	1.535 (3)		
C20—O2—C17	118.21 (18)	C13—C12—C11	111.29 (19)
C2C1C10	112.97 (19)	C13—C12—H12A	109.4
C2—C1—H1A	109.0	C11—C12—H12A	109.4
C10-C1-H1A	109.0	C13—C12—H12B	109.4
C2—C1—H1B	109.0	C11—C12—H12B	109.4
C10—C1—H1B	109.0	H12A—C12—H12B	108.0
H1A—C1—H1B	107.8	C12—C13—C18	111.31 (18)
C3—C2—C1	111.1 (2)	C12—C13—C17	116.67 (18)
C3—C2—H2A	109.4	C18—C13—C17	108.70 (18)
C1—C2—H2A	109.4	C12—C13—C14	107.93 (16)
C3—C2—H2B	109.4	C18—C13—C14	112.67 (19)
C1—C2—H2B	109.4	C17-C13-C14	99.06 (16)
$H^2A - C^2 - H^2B$	108.0	C8-C14-C15	119 71 (19)
01 - C3 - C4	1223(2)	C_{8} C_{14} C_{13}	114.07 (16)
01 - 03 - 01	122.5(2)	C_{15} C_{14} C_{13}	103.92(17)
C4-C3-C2	122.0(2) 115.0(2)	C8 - C14 - H14	105.92(17) 105.0(12)
$C_{1}^{-} = C_{2}^{-} = C_{2}^{-}$	124.8(2)	C15 - C14 - H14	105.0(12) 106.5(12)
$C_{5} - C_{4} - C_{11}$	124.0(2) 121.81(18)	C13 - C14 - H14	106.8(12)
$C_3 = C_4 = C_{11}$	1121.01 (10)	$C_{13} = C_{14} = C_{14}$	100.3(12) 104.47(10)
C_{4} C_{5} C_{6}	122.3 (2)	$C_{14} = C_{15} = C_{10}$	110.0
$C_{4} = C_{5} = C_{10}$	122.3(2) 121.8(2)	C14_C15_H15A	110.9
$C_{4}^{} C_{5}^{} C_{10}^{}$	121.0(2)	C14 C15 U15P	110.9
$C_{0} = C_{0} = C_{10}$	113.94 (18)	С14—С15—НІЗВ	110.9
$C_{2} = C_{0} = C_{1}$	111.39 (18)		110.9
С5—С6—Н6А	109.4	HISA—CIS—HISB	108.9
С/—С6—Н6А	109.4		105.55 (18)
С5—С6—Н6В	109.4	С17—С16—Н16А	110.6
С7—С6—Н6В	109.4	C15—C16—H16A	110.6
Н6А—С6—Н6В	108.0	C17—C16—H16B	110.6
C8—C7—C6	111.90 (19)	C15—C16—H16B	110.6
С8—С7—Н7А	109.2	H16A—C16—H16B	108.8
С6—С7—Н7А	109.2	O2—C17—C16	107.73 (18)
С8—С7—Н7В	109.2	O2—C17—C13	114.86 (17)
С6—С7—Н7В	109.2	C16—C17—C13	105.30 (19)
H7A—C7—H7B	107.9	O2—C17—H17	106.4 (12)
C14—C8—C7	111.91 (18)	C16—C17—H17	114.5 (12)
C14—C8—C9	108.23 (17)	С13—С17—Н17	108.3 (11)
C7—C8—C9	110.17 (17)	C13—C18—H18A	109.5

С14—С8—Н8	108.5 (12)	C13—C18—H18B	109.5
С7—С8—Н8	109.9 (12)	H18A—C18—H18B	109.5
С9—С8—Н8	108.1 (12)	C13—C18—H18C	109.5
C11—C9—C8	110.94 (17)	H18A—C18—H18C	109.5
C11—C9—C10	112.56 (17)	H18B-C18-H18C	109.5
C8—C9—C10	114.42 (17)	С10—С19—Н19А	109.5
С11—С9—Н9	105.5 (11)	С10—С19—Н19В	109.5
С8—С9—Н9	105.2 (11)	H19A—C19—H19B	109.5
С10—С9—Н9	107.5 (11)	С10—С19—Н19С	109.5
C5-C10-C1	110.32 (17)	H19A—C19—H19C	109.5
C5-C10-C19	109.15 (17)	H19B—C19—H19C	109.5
C1—C10—C19	110.36 (18)	O3—C20—O2	124.3 (2)
C5—C10—C9	107.58 (16)	O3—C20—C21	125.0 (2)
C1—C10—C9	107.54 (16)	O2—C20—C21	110.7 (2)
C19—C10—C9	111.85 (18)	C20-C21-H21A	109.5
C9—C11—C12	113.41 (19)	C20—C21—H21B	109.5
C9—C11—H11A	108.9	H21A—C21—H21B	109.5
C12—C11—H11A	108.9	C20—C21—H21C	109.5
C9—C11—H11B	108.9	H21A—C21—H21C	109.5
C12—C11—H11B	108.9	H21B—C21—H21C	109.5
H11A—C11—H11B	107.7		
C10—C1—C2—C3	-57.7 (3)	C11—C9—C10—C19	-59.0 (2)
C1—C2—C3—O1	-146.8 (2)	C8—C9—C10—C19	68.8 (2)
C1—C2—C3—C4	35.8 (3)	C8—C9—C11—C12	53.4 (3)
O1—C3—C4—C5	178.6 (2)	C10-C9-C11-C12	-176.93 (19)
C2—C3—C4—C5	-4.0 (3)	C9—C11—C12—C13	-54.1 (3)
O1—C3—C4—Cl1	-3.1 (3)	C11-C12-C13-C18	-69.5 (2)
C2—C3—C4—Cl1	174.23 (17)	C11—C12—C13—C17	164.98 (19)
C3—C4—C5—C6	170.6 (2)	C11—C12—C13—C14	54.6 (2)
Cl1—C4—C5—C6	-7.5 (3)	C7—C8—C14—C15	-54.6 (3)
C3—C4—C5—C10	-8.1 (4)	C9—C8—C14—C15	-176.23 (19)
Cl1—C4—C5—C10	173.84 (16)	C7—C8—C14—C13	-178.57 (18)
C4—C5—C6—C7	126.6 (2)	C9—C8—C14—C13	59.8 (2)
C10—C5—C6—C7	-54.7 (3)	C12-C13-C14-C8	-60.2 (2)
C5—C6—C7—C8	54.8 (3)	C18—C13—C14—C8	63.1 (2)
C6—C7—C8—C14	-175.36 (19)	C17—C13—C14—C8	177.88 (18)
C6—C7—C8—C9	-54.9 (3)	C12—C13—C14—C15	167.8 (2)
C14—C8—C9—C11	-54.1 (2)	C18—C13—C14—C15	-68.9 (2)
C7—C8—C9—C11	-176.8 (2)	C17—C13—C14—C15	45.8 (2)
C14—C8—C9—C10	177.19 (17)	C8—C14—C15—C16	-162.1 (2)
C7—C8—C9—C10	54.5 (3)	C13—C14—C15—C16	-33.5 (2)
C4C5C10C1	-13.1 (3)	C14—C15—C16—C17	7.2 (3)
C6C5C10C1	168.1 (2)	C20—O2—C17—C16	154.1 (2)
C4—C5—C10—C19	108.3 (2)	C20—O2—C17—C13	-88.9 (2)
C6C5C10C19	-70.4 (2)	C15—C16—C17—O2	144.7 (2)
C4—C5—C10—C9	-130.1 (2)	C15—C16—C17—C13	21.7 (3)
C6C5C10C9	51.1 (2)	C12—C13—C17—O2	85.0 (2)
C2-C1-C10-C5	45.1 (3)	C18—C13—C17—O2	-41.8 (2)
C2-C1-C10-C19	-75.5 (2)	C14—C13—C17—O2	-159.60 (18)

C2-C1-C10-C9 C11-C9-C10-C5 C8-C9-C10-C5 C11-C9-C10-C1 C8-C9-C10-C1	162.20 (19) -178.85 (19) -51.0 (2) 62.3 (2) -169.83 (18)	C12—C13—C17—C16 C18—C13—C17—C16 C14—C13—C17—C16 C17—O2—C20—O3 C17—O2—C20—C21		-156.7 (2) 76.5 (2) -41.3 (2) -0.1 (3) -179.48 (19)
Hydrogen-bond geometry (Å, °)				
D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H··· A
C6—H6B···O1 ⁱ Symmetry codes: (i) $-x$, $y+1/2$, $-z+3/2$.	0.97	2.62	3.565 (3)	166.

Fig. 1

